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Training Workshop Guidelines

– help us create a positive environment

Please help us create a positive collaborative environment for this event. Our top 

goal is to attract and build the community in high performance computing. Please 

consider not only the technical aspects of your interactions, but also how it affects 

other participants.

• Start your comments with a positive statement before your comment or question

• Give equal time to all participants

• Please, help others with technical issues and without negative comments

• And most importantly, respect all participants, regardless of background, language, culture

June 25, 2024 AMD @ EPCC
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AMD @ EPCC Workshop Schedule – Tuesday, June 25th 2024

June 25, 2024 AMD @ EPCC

1. AMD Architecture and Memory Model -  (Bob Robey)

2. The Software Porting Process -  (Bob Robey)

3. HIP and ROCm - (Giacomo Capodaglio)

4. OpenMP on AMD GPUs -  (Bob Robey)

5. Performance Portability Languages - (Bob Robey)

6. Overview of AMD Tools - (Giacomo Capodaglio)
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What AMD offers

• Accelerated Processing Unit (APU) Architecture from HPC center to Desktop

❖ Only product that is a true APU

• Commitment to APU Programming model for GPU products

• AMD Values Customer friendly policies

❖ Open-source

❖ No vendor lock-in

❖ Portability

• Industry leading CPU performance

• Commitment to HPC customers

❖ Leading FP64 performance, based on true FP64 (IEEE-754) performance specs unless otherwise stated

❖ Increasing every generation

❖ No special tricks to get FP64 for general applications

• Commitment to ML/AI customers

❖ Drop-in support for ML/AI applications

June 25, 2024 AMD @ EPCC
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Taxonomy of Compute Architectures
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Discrete GPUAPU Architecture

• Taxonomy categorizes architecture by dominance of hardware components

❖Memory Dominant – architecture revolves around a single memory space

❖ Compute Dominant – architecture centered around a single compute resource

June 25, 2024 AMD @ EPCC
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Breakthrough in compute capability of an APU

• Integrated GPUs have traditionally been limited by how much GPU compute capability can be included

❖ Silicon Chip only has so much space

❖ Chiplets allow us to expand that space

• Let’s try adding more capability into an APU

Memory  

GPU Compute CPU Compute 

APU

Memory  

APU

GPU GPU

GPU CPU 

or 

GPU

Dump more

compute capability

into hardware
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MI200 Series

• Technology in first Exascale systems

• High compute to power ratio

• Tight integration with memory

• Infinity Fabric  for data transfers

• Memory Bandwidth Workloads

• Hybrid CPU + GPU Capability

• GPUs can drive full bandwidth

• Extreme Compute Workloads

• Suitable for typical AI work

• Other work entirely on GPU

MI300A MI300X

Bringing it to AMD Instinct  Accelerator Products

Leadership 

generative AI 

accelerator

Extreme 

Compute 

Architecture with 

leading memory 

capacity and 

bandwidth

First True 

APU 

Architecture 

for HPC and 

AI
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Memory Model

Definition

A memory model defines the rules for the synchronization of memory 

modifications between threads, compute hardware and cache. A memory model 

is critical for parallel computing to help both system developers and application 

programmers avoid data hazard or race conditions where memory is modified by 

one entity, but another compute unit fails to get the updated value.

June 25, 2024 AMD @ EPCC



11 |

[Public]

AMD MI200 GPUs and Memory Addressing

In discrete GPU systems, CPU and GPU memory spaces are 

separate and data needs to be moved between the two spaces. 

This data movement can be performed in two ways:

1. By the programmer, explicitly

2. By the Operating System (OS), who helps move pages on 

access and subsequent page fault

• We call this managed memory – short for "memory is managed by the 

operating system”

• If no corresponding address is found, the program will fail with a 

segmentation fault

AMD MI200 GPUs (MI210, MI250, MI250X) are discrete GPUs

• Implement managed memory

• To enable managed memory, export HSA_XNACK=1

June 25, 2024 AMD @ EPCC

AMD CDNA 2 Coherent Memory Architecture
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HMM: Heterogenous Memory Management

• Feature of the Linux kernel

• It provides infrastructure and helpers to integrate non-conventional memory (GPU memory) into 

regular Linux® kernel

• Any valid pointer on the CPU is also a valid pointer for the GPU and vice versa

• Enables page migration between CPU and GPU

• HMM never frees CPU memory when migration happens

• In this case, the migratable CPU memory is still swappable

June 25, 2024 AMD @ EPCC



13 |

[Public]

XNACK

Definition

XNACK refers to the AMD GPU's ability to retry memory accesses that fail due to a page fault.

xnack environment variable

On MI250X, it can be enabled on a per-process based using the environment variable HSA_XNACK=1 and 
disabled using HSA_XNACK=0. Default decided at boot time.

xnack compiler flag

Run rocminfo | grep xnack to check if xnack is enabled

Compilation mode that can assume three possible values: xnack+, xnack-, xnack any.

To change the xnack compilation mode of a program, xnack+ or xnack- may be appended to the architecture flags:

• --amdgpu-target=gfx90a:xnack+   [ROCm < 4.5] 

• --offload-arch=gfx90a:xnack+  [ROCm >= 4.5]

Supplying multiple xnack options will yield a "fat-binary" with both modes enabled.

When not specified, the default “xnack any” mode will be used.

Code compiled with “xnack any” will run in any case. 

June 25, 2024 AMD @ EPCC
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AMD CDNA 2 Coherent Memory Architecture AMD CDNA 3 Unified Memory APU Architecture

▪ Eliminate Redundant Memory 
Copies

▪ No programming distinction 
between host and device 
memory spaces

▪ High performance, fine-grained 
sharing between CPU and GPU 
processing elements

▪ Single process can address all 
memory, compute elements on 
a socket

AMD  Instinct APU

Unified Memory
(HBM)

UNIFIED MEMORY APU 
ARCHITECTURE BENEFITSMI300A

GPUCPU

GPU
Memory

(HBM)

CPU
Memory

(DDR)
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June 25, 2024 AMD @ EPCC

APU PROGRAMMING MODEL

• GPU memory allocation on Device

• Explicit memory management between CPU & GPU

• Synchronization Barrier

https://github.com/amd/HPCTrainingExamples/tree/main/ManagedMemory

https://github.com/amd/HPCTrainingExamples/tree/main/ManagedMemory
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June 25, 2024 AMD @ EPCC

APU PROGRAMMING: PERFORMANCE IMPLICATIONS

• GPU memory allocation on Device

• Explicit memory management between CPU & GPU

• Synchronization Barrier

AMD  Instinct APU
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APU PROGRAMMING: PERFORMANCE IMPLICATIONS

• GPU memory allocation on Device

• Explicit memory management between CPU & GPU

• Synchronization Barrier
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Portability, Performance, and Productivity

Performance portability has been identified by the US Department of Energy (DOE) as a critical issue for  

Exascale computing*

Importance of Portability

❖ Too much work to port from CPU to GPU if a separate port must be made for each vendor 

❖ Would be nice to have the same code for CPU and GPU

Importance of Performance

❖ Good performance is a necessity (for motivation and code capabilities)

❖ Straight-forward code should give good performance across a range of computing hardware

Importance of Productivity

❖ Cannot afford to increase the number of developers

❖ Cost of initial port and long-term application support

June 25, 2024 AMD @ EPCC

*Dubey, Anshu, et al. "Performance portability in the exascale computing project: exploration through a panel series." Computing in Science & Engineering 23.5 

(2021): 46-54.
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Multiple Language Paths for AMD GPUs

Native or Low-level languages HIP, OpenCL

Pragma-based languages OpenMP, OpenACC

Higher Level Performance 
Portability languages – 
Frameworks

Kokkos, RAJA

June 25, 2024 AMD @ EPCC
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Native or Low-level Languages

Heterogeneous-compute Interface for Portability (HIP)

❖ A portable layer on top of ROCm and CUDA

AMD also supports OpenCL , the original portable low-level language

Converting CUDA to HIP is straightforward

❖ Hipify scripts do the majority of the work

❖ Still requires some optimization effort to get good performance

Requires a different source on CPU and GPU

❖ Requires effort for porting, an overhead for large applications

June 25, 2024 AMD @ EPCC
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Pragma-based Languages

OpenMP® – primary supported option for AMD GPUs

❖ Implemented through LLVM

OpenACC – Supported through Cray, LLVM  (CLACC) and GCC compilers

❖ Also available are source-to-source translation tools from OpenACC to OpenMP (Intel® and CLACC)

❖ Not as well supported as other options

Standard Language support – mostly a future option

❖ Long-time discussed “for_each”, “do_concurrent”, “for_all”,

❖ Parallel C++ through parallel “execution policies”

June 25, 2024 AMD @ EPCC
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Higher Level Performance Portability Frameworks

Kokkos – Sandia National Lab (SNL) C++ performance portable programming model

❖ The Kokkos team has agressively developed support for AMD GPUs via a HIP backend

❖ Kokkos handles many of the unique attributes of the AMD GPUs for you

❖ Parts being integrated into the C++ standard

RAJA – Lawrence Livermore National Lab (LLNL) C++ performance portability layer

❖ Modular in structure with separation of compute and data management

❖ Supports AMD GPUs

❖ Key kernel patterns have been optimized by AMD

Advantages of Performance Portability Frameworks

❖ True single-source application code (at least if you restrict yourself to C++)

❖ Many of these framework support both CPUs and GPUs

June 25, 2024 AMD @ EPCC
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Other Languages

Many other languages also work on AMD GPUs to some level and are continually improving

❖ SYCL

❖ Julia

❖ Python

ML/AI -- Support for these languages is excellent and portable

❖ PyTorch – AMD is a founding member of the PyTorch Foundation

❖ TensorFlow

❖ And many other ML/AI packages

June 25, 2024 AMD @ EPCC
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What is HIP?

June 25, 2024 AMD @ EPCC

AMD’s Heterogeneous-compute Interface for 

Portability, or HIP, is a C++ runtime API and kernel 

language that allows developers to create portable 

applications that can run on AMD’s accelerators as well 

as CUDA devices

• Open-source

• Syntactically similar to CUDA. Most CUDA API calls 

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime 

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include 

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU
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A Tale of Host and Device

June 25, 2024 AMD @ EPCC

❖The Host is the CPU

❖Host code runs here

❖Usual C++ syntax and features

❖Entry point is the ‘main’ function

❖HIP API can be used to create device buffers, 
move between host and device, and launch 
device code.

❖The Device is the GPU

❖Device code runs here

❖C-like syntax

❖Device codes are launched via “kernels”

❖ Instructions from the Host are enqueued into 
“streams”

Source code in HIP has two flavors: Host code and Device code
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HIP API
Device Management:

• hipSetDevice(), hipGetDevice(), hipGetDeviceProperties()

Memory Management

• hipMalloc(), hipMemcpy(), hipMemcpyAsync(), hipFree()

Streams

• hipStreamCreate(), hipDeviceSynchronize(), hipStreamSynchronize(), hipStreamDestroy()

Events

• hipEventCreate(), hipEventRecord(), hipStreamWaitEvent(), hipEventElapsedTime()

Device Kernels

• __global__, __device__, hipLaunchKernelGGL()

Device code

• threadIdx, blockIdx, blockDim, __shared__, 200+ math functions covering entire CUDA math library.

Error handling

• hipGetLastError(), hipGetErrorString()

June 25, 2024 AMD @ EPCC

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html


29 |

[Public]

Device Kernels: Grid Hierarchy

• In HIP, kernels are executed on a grid of threads that run on a GPU

❖ 1D, 2D, and 3D grids are supported, but most work maps well to 1D

❖ The grid is what you map your problem to

• Each dimension of the grid is partitioned into equal sized blocks of threads

• Each block is made up of multiple threads

• The grid and its associated blocks are just 

organizational constructs, the threads are 

the things that do the work

• If you’re familiar with CUDA already,

the grid+block structure is very similar in HIP

June 25, 2024

Thread blocks Grid of thread blocks

Threads

AMD NVIDIA

Grid Grid

Workgroup Thread Block

Thread Thread

Wavefront (64) Warp (32)

AMD @ EPCC

TERMINOLOGY
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The Grid: blocks of threads in 1D

Threads in grid have access to:

• Their respective block (workgroup): blockIdx.x

• Their respective thread ID in a block: threadIdx.x

• Their block’s dimension (# of threads in the block): blockDim.x

• The grid’s dimension (# of blocks in the grid): gridDim.x

June 25, 2024 AMD @ EPCC

Grid of blocks

 lock of threads
Thread

int id = blockDim.x * blockIdx.x + threadIdx.x;

   = 4      * 2      + 3

   = 11

Block 0 Block 2Block 1 ...

0 1 2 3 0 1 2 3 0 1 2 3 ...

Global thread ID

For example, thread 3 of block 2 

would have a global thread ID of 11

Each color is a block of threads

Each small square is a thread
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

June 25, 2024 AMD @ EPCC
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

Include header for HIP runtime

June 25, 2024 AMD @ EPCC
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

GPU kernel

June 25, 2024 AMD @ EPCC



34 |

[Public]

Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

Allocate and initialize host memory buffer

June 25, 2024 AMD @ EPCC
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

Allocate GPU buffer and copy values 

from CPU buffer to GPU buffer

June 25, 2024 AMD @ EPCC
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

Launch GPU

 kernel

June 25, 2024 AMD @ EPCC
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Example: Simple GPU Multiply

#include <stdio.h>

#include <math.h>

#include "hip/hip_runtime.h"

__global__ void multiply(double *A, int n)

{

  int id = blockDim.x * blockIdx.x + threadIdx.x;

  if (id < n) A[id] = 2.0 * A[id];

}

int main(int argc, char *argv[]){

  int N = 1024 * 1024;

  size_t bytes = N * sizeof(double);

  double *h_A = (double*)malloc(bytes);

  for(int i=0; i<N; i++){

    h_A[i] = (double)rand()/(double)RAND_MAX;

  }

double *d_A;

  hipMalloc(&d_A, bytes);

  hipMemcpy(d_A, h_A, bytes, hipMemcpyHostToDevice);

 

  int thr_per_blk = 256;

  int blk_in_grid = ceil( float(N) / thr_per_blk );

  multiply<<<blk_in_grid,thr_per_blk>>>(d_A, N);

  hipMemcpy(h_A, d_A, bytes, hipMemcpyDeviceToHost);

  free(h_A);

  hipFree(d_A);

  printf("__SUCCESS__\n");

 

  return 0;

}

Copy data from GPU buffer 

to CPU buffer and free memory

June 25, 2024 AMD @ EPCC
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Software to 

hardware mapping

June 25, 2024 AMD @ EPCC

Blocks and threads allow a natural mapping of kernels to hardware:
• Upon kernel launch, a grid of thread blocks is launched to compute the kernel on the compute units (CUs)

Threads within a thread block (workgroup):
• Execute on the same CU in chunks of 64 threads called wavefronts (or waves).

• Share Local Data Share (LDS) memory and L1 cache

• Can synchronize

About wavefronts:
• Wavefronts execute on SIMD units (located inside the CU)

• If a wavefront stalls (e.g., data dependency) CUs can quickly context switch to another wavefront

A good practice is to make the block size a multiple of 64 and have several wavefronts (e.g., 256 threads)
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Blocking vs Nonblocking API functions

• Launching a kernel is non-blocking for the host

• After sending instructions/data, the host continues to do more work while the device executes the kernel

• However, hipMemcpy is blocking for the host

• The data pointed to in the arguments can be safely accessed/modified after the function returns

• To make asynchronous copies, we need to allocate non-pageable (pinned) host memory using 

hipHostMalloc and copy using hipMemcpyAsync

 hipHostMalloc(h_a, Nbytes, hipHostMallocDefault);

hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice, stream);

• It is not safe to access/modify the arguments of hipMemcpyAsync without some sort of synchronization.

June 25, 2024 AMD @ EPCC

  Side Note: H2D/D2H bandwidth increases significantly when host memory is pinned
• It is good practice to use pinned host memory where data is frequently transferred to/from the device
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Streams

• A stream in HIP is a queue of tasks (e.g. kernels, memcpys, events). 

• Tasks enqueued in a stream complete in order on that stream.

• Tasks being executed in different streams are allowed to overlap and share device resources.

• Streams are created via:

hipStream_t stream;

hipStreamCreate(&stream);

• And destroyed via:

hipStreamDestroy(stream);

• Passing 0 or NULL as the hipStream_t argument to a function instructs the function to execute on a 

stream called the ‘NULL Stream’:

• No task on the NULL stream will begin until all previously enqueued tasks in all other streams have completed.

• Blocking calls like hipMemcpy run on the NULL stream. 

June 25, 2024 AMD @ EPCC
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Streams

• Suppose we have 4 small kernels to execute:

myKernel1<<<dim3(1), dim3(256), 0, 0>>>(256, d_a1);

myKernel2<<<dim3(1), dim3(256), 0, 0>>>(256, d_a2);

myKernel3<<<dim3(1), dim3(256), 0, 0>>>(256, d_a3);

myKernel4<<<dim3(1), dim3(256), 0, 0>>>(256, d_a4);

• Even though these kernels use only one block each, they’ll execute in serial on the NULL stream:

June 25, 2024 AMD @ EPCC

NULL 

Stream
myKernel1 myKernel2 myKernel3 myKernel4

Time
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Streams

• With streams we can effectively share the GPU’s compute resources:
myKernel1<<<dim3(1), dim3(256), 0, stream1>>>(256, d_a1); 

myKernel2<<<dim3(1), dim3(256), 0, stream2>>>(256, d_a2); 

myKernel3<<<dim3(1), dim3(256), 0, stream3>>>(256, d_a3); 

myKernel4<<<dim3(1), dim3(256), 0, stream4>>>(256, d_a4); 

Note 1: Kernels must modify different parts of memory to avoid data races. 

Note 2: With large kernels, overlapping computations may not help performance.

June 25, 2024 AMD @ EPCC

NULL 
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myKernel1
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Streams

• There is another use for streams besides concurrent kernels: 

• Overlapping kernels with data movement.

• AMD GPUs have separate engines for: 

• Host->Device memcpys 

• Device->Host memcpys

• Compute kernels. 

• These three different operations can overlap without dividing the GPU’s resources.

• The overlapping operations should be in separate, non-NULL, streams. 

• The host memory should be pinned.

June 25, 2024 AMD @ EPCC
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Streams

Suppose we have 3 kernels which require moving data to and from the device:

hipMemcpy(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice));

hipMemcpy(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice));

myKernel1<<<blocks, threads, 0, 0>>>(N, d_a1); 

myKernel2<<<blocks, threads, 0, 0>>>(N, d_a2); 

myKernel3<<<blocks, threads, 0, 0>>>(N, d_a3); 

hipMemcpy(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost);

hipMemcpy(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost);

June 25, 2024 AMD @ EPCC

NULL Stream
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Streams

Changing to asynchronous memcpys and using streams:

hipMemcpyAsync(d_a1, h_a1, Nbytes, hipMemcpyHostToDevice, stream1);

hipMemcpyAsync(d_a2, h_a2, Nbytes, hipMemcpyHostToDevice, stream2);

hipMemcpyAsync(d_a3, h_a3, Nbytes, hipMemcpyHostToDevice, stream3);

myKernel1<<<blocks, threads, 0, stream1>>>(N, d_a1); 

myKernel2<<<blocks, threads, 0, stream2>>>(N, d_a2); 

myKernel3<<<blocks, threads, 0, stream3>>>(N, d_a3); 

hipMemcpyAsync(h_a1, d_a1, Nbytes, hipMemcpyDeviceToHost, stream1);

hipMemcpyAsync(h_a2, d_a2, Nbytes, hipMemcpyDeviceToHost, stream2);

hipMemcpyAsync(h_a3, d_a3, Nbytes, hipMemcpyDeviceToHost, stream3);

June 25, 2024 AMD @ EPCC
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Synchronization

How do we coordinate execution on device streams with host execution? Need some synchronization points.

• hipDeviceSynchronize();

• Heavy-duty sync point.

• Blocks host until all work in all device streams has reported complete.

• hipStreamSynchronize(stream);

• Blocks host until all work in stream has reported complete.

Can a stream synchronize with another stream? For that we need ‘Events’:

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html

June 25, 2024 AMD @ EPCC

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/group___event.html
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ROCm

ROCm is an open-source platform for GPU computing (including drivers, 

development tools, APIs, and libraries) on AMD GPUs.

• ROCm drivers allow the OS to communicate with the GPU hardware.

• ROCm libraries provide optimized routines for scientific computing and machine learning tasks, 

such as BLAS, FFT, etc.

• ROCm is powered by AMD’s HIP programming environment and runtime. 

is supported on AMD & certain GPUs.

For the full list, please visit https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus 

June 25, 2024 AMD @ EPCC

https://rocm.docs.amd.com/en/latest/release/gpu_os_support.html#linux-supported-gpus
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ROCm GPU Libraries

June 25, 2024 AMD @ EPCC

ROCm provides several GPU math libraries

• Typically, two versions:

• roc* -> AMD GPU library, usually written in HIP

• hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA 

and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD 

devices, may prefer the roc* library API (performance). 

• Some roc* libraries perform better by using additional APIs not 

available in the cu* equivalents

hipBLAS

rocBLAS cuBLAS
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AMD Math Library Equivalents: “Decoder Ring”

June 25, 2024 AMD @ EPCC

Basic Linear Algebra 

Subroutines
CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel 

Primitives
CUB ROCPRIM

CURAND ROCRAND
Random Number 

Generation
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AMD Math Library Equivalents: “Decoder Ring”

June 25, 2024 AMD @ EPCC

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP  → HIP_PORTING_GUIDE.MD FOR A COMPLETE LIST

Solvers and preconditioners 

for sparse linear systems
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Querying the System

• rocminfo: Queries and displays information on the system’s hardware

• More info at: https://github.com/RadeonOpenCompute/rocminfo

• Querying ROCm version: 

• If you install ROCm in the standard location (/opt/rocm) version info is at: /opt/rocm/.info/version-dev

• Can also run the command ‘dkms status’ and the ROCm version will be displayed

• rocm-smi: Queries and sets AMD GPU frequencies, power usage, and fan speeds

• sudo privileges are needed to set frequencies and power limits

• sudo privileges are not needed to query information

• Get more info by running ‘rocm-smi -h’ or looking at: https://github.com/RadeonOpenCompute/ROC-smi

June 25, 2024 AMD @ EPCC

$ /opt/rocm/bin/rocm-smi

========================ROCm System Management Interface========================

================================================================================

GPU  Temp   AvgPwr  SCLK     MCLK    Fan   Perf    PwrCap  VRAM%  GPU%

1    38.0c  18.0W   1440Mhz  945Mhz  0.0%  manual  220.0W    0%   0%

================================================================================

==============================End of ROCm SMI Log ==============================

https://github.com/RadeonOpenCompute/rocminfo
https://github.com/RadeonOpenCompute/ROC-smi


4. OpenMP ® on

AMD GPUs



53 |

[Public]

Enabling OpenMP® on AMD Hardware

AMD @ EPCCJune 25, 2024

LLVM GCC

Compiler Module amdclang/aomp/clacc gcc/og

Command Flags Command Flags

L
a

n
g

u
a

g
e

C
amdclang
clang

-fopenmp --offload-arch=<gfx###> gcc -fopenmp --foffload=-march=<gfx###>

C++
amdclang++
clang++

-fopenmp --offload-arch=<gfx###> g++ -fopenmp --foffload=-march=<gfx###>

Fortran
amdflang
flang

-fopenmp --offload-arch=<gfx###> gfortran -fopenmp --foffload=-march=<gfx###>

Offloading Target 

(CPU/GPU/GCD)

Architecture
<gfx###>

AMD MI300 gfx942

AMD MI200 Series gfx90a

AMD MI100 gfx908

Native Host (CPU) -fopenmp-targets=amdgcn-amd-amdhsa
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OpenMP® Device Model

• As of version 4.0 the OpenMP API supports accelerators/coprocessors.

• Device model:

❖One host for “traditional” multi-threading

❖Multiple accelerators/coprocessors of the same kind for offloading

❖Devices are accessible through a device ID (from 0 to n-1 for n devices)

• OpenMP device model is agnostic of actual technology.  In theory, devices only need to:

❖Send data to and receive data from the host

❖Perform computation upon request

Accelerators

HostJune 25, 2024 AMD @ EPCC
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OpenMP® Execution Model for Devices

Offload region and its data environment are bound to the lexical scope of the construct

• Data environment is created at the opening curly brace

• Data environment is automatically destroyed at the closing curly brace

• Data transfers (if needed) are done at the curly braces, too:
❖ Upload data from the host to the target device at the opening curly brace.

❖ Download data from the target device at the closing curly brace.

Host memory Device mem.

0101010101101

0011110101101

0100010101010

1010101010101

0201010110100

0010010101010

1010100011001

A:

A:

0101010101101

0011110101101

0100010101010

1010101010101

0201010110100

0010010101010

1010100011001

0xabcd

0xef12

!$omp target         &
!$omp   map(alloc:A) &
!$omp   map(to:A)    &
!$omp   map(from:A)  &
   call compute(A)
!$omp end target

1101110101101

0111110101101

0100010101010

0001111010011

0301010110101

1110010101010

1010101100111

1101110101101

0111110101101

0100010101010

0001111010011

0301010110101

1110010101010

1010101100111

June 25, 2024 AMD @ EPCC
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Running Example for this Presentation: saxpy

void saxpy() {
    float a, x[N], y[N];
    // left out initialization

double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp parallel for firstprivate(a)
for (int i = 0; i < N; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

This is the code we want to execute on 

a target device (i.e., GPU)

Don’t do this at home!

Use a BLAS library for this!

June 25, 2024 AMD @ EPCC
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OpenMP® Device Constructs

• Transfer control and data from the host to the device

• Syntax (C/C++)
 #pragma omp target [clause[[,] clause],…] 
 structured-block

• Syntax (Fortran)
 !$omp target [clause[[,] clause],…] 
 structured-block
 !$omp end target

• Clauses
 device(scalar-integer-expression)         
 map([{alloc | to | from | tofrom}:] list)  
 if(scalar-expr)

June 25, 2024 AMD @ EPCC
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Example: saxpy

void saxpy() {
    float a, x[N], y[N];

double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp target
for (int i = 0; i < N; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}
h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:N]
y[0:N]

x[0:N]
y[0:N]

amdclang -fopenmp --offload-arch=gfx90a ...

All accessed arrays are copied 

from host to device and back.

Copying x back is not 

necessary. It was not changed.

The compiler identifies variables that 

are used in the target region.

“map(tofrom:y[0:N])”

Presence check: only 

transfer if not yet allocated 

on the device. 

June 25, 2024 AMD @ EPCC
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Example: saxpy

subroutine saxpy(a, x, y, n)
use iso_fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimension(n) :: x
real(kind=real32), dimension(n) :: y

!$omp target
do i=1,n

y(i) = a * x(i) + y(i)
end do
!$omp end target

end subroutine
h
o
s
t

ta
rg
e
t

h
o
s
t

a
x(1:n)
y(1:n)

x(1:n)
y(1:n)

All accessed arrays are copied 

from host to device and back.

Copying x back is not 

necessary: it was not changed.

The compiler identifies variables that 

are used in the target region.

“map(tofrom:y(1:n))”
Presence check: only 

transfer if not yet allocated 

on the device. 

amdflang -fopenmp --offload-arch=gfx90a ...

June 25, 2024 AMD @ EPCC



60 |

[Public]

Example: saxpy

void saxpy() {
double a, x[N], y[N];
double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp target map(to:x[0:N]) \

map(tofrom:y[0:N])
for (int i = 0; i < N; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:N]
y[0:N]

y[0:N]

amdclang -fopenmp --offload-arch=gfx90a ...

June 25, 2024 AMD @ EPCC
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Example: saxpy

void saxpy(float a, float* x, float* y, 
int n) {

double t = 0.0;
double tb, te;
tb = omp_get_wtime();
#pragma omp target map(to:x[0:n]) \

map(tofrom:y[0:n])
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:n]
y[0:n]

y[0:n]

The compiler cannot determine the 

size of memory behind the pointer.

Programmers have to help the compiler 

with the amount of data to transfer.

amdclang -fopenmp --offload-arch=gfx90a ...

June 25, 2024 AMD @ EPCC
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Creating Parallelism on the Target Device

• The target construct transfers the control flow to the target device

o Transfer of control is sequential and synchronous.

o This is intentional!

• OpenMP® separates offload and parallelism

o Programmers need to explicitly create parallel regions on the target device.

o In theory, this can be combined with any OpenMP construct.

o In practice, there is only a useful subset of OpenMP features for a target device such as a GPU, e.g., no I/O, limited 

use of base language features.

June 25, 2024 AMD @ EPCC
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Example: saxpy

void saxpy(float a, float* x, float* y, 
int n) {

#pragma omp target map(to:x[0:n]) \
map(tofrom(y[0:n])

#pragma omp parallel for simd
for (int i = 0; i < n; i++) {

y[i] = a * x[i] + y[i];
}

}

h
o
s
t

ta
rg
e
t

h
o
s
t

Create a team of threads to execute the 

loop in parallel using SIMD instructions.

GPUs are multi-level devices:

SIMD, threads, thread blocks

clang -fopenmp --offload-arch=gfx90a

June 25, 2024 AMD @ EPCC
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teams Construct

• Support multi-level parallel devices

• Syntax (C/C++):

 #pragma omp teams [clause[[,] clause],…] 
 structured-block

• Syntax (Fortran):

 !$omp teams [clause[[,] clause],…] 
 structured-block

• Clauses

 num_teams(integer-expression), thread_limit(integer-expression)
 default(shared | firstprivate | private none)
 private(list), firstprivate(list), shared(list), reduction(operator:list)

June 25, 2024 AMD @ EPCC
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Optimizing Data Transfers is Key to Performance

• Connections between host and accelerator are typically 

lower-bandwidth, higher-latency interconnects

o Bandwidth host memory:  hundreds of GB/sec

o Bandwidth accelerator memory: TB/sec

o PCIe® Gen 4 bandwidth (16x): tens of GB/sec

• Unnecessary data transfers must be avoided, by 

o only transferring what is actually needed for the computation, and 

o making the lifetime of the data on the target device as long as possible.

June 25, 2024 AMD @ EPCC
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Summary on OpenMP ®

• AMD OpenMP® compilers can offload computation to AMD GPUs

❖Good support for C and C++ languages

❖Basic support for Fortran with active development underway

❖Mature offload model w/ support for asynchronous offload/transfer

❖Being used in production by many applications

• Backed by an Industry language standard

❖Managed by the OpenMP® Architecture Review Board

• Portability across GPU platforms for core OpenMP® constructs

❖Tightly integrates with OpenMP multi-threading on the host

• Composability across programming languages (C,C++,Fortran)

❖Interoperable with some other GPU programming languages and libraries

June 25, 2024 AMD @ EPCC
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Languages (ex. Kokkos)
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Performance portable languages

Three P’s critical for HPC application developer:

Custom implementations for each new computer hardware vendor/type is not sustainable

For code maintenance , single-source application code is desirable

Department of Energy (DOE) has sponsored conferences and workshops on this topic

Two popular P3 languages have emerged in the DOE

RAJA – LLNL C++ performance portability layer
Modular in structure with separation of compute and data management

Adaptable for how each application team implements in their code

Kokkos – SNL C++ performance portable programming model
Comprehensive approach to performance portability

Parts being integrated into C++ standard

Performance Portability Productivity

June 25, 2024 AMD @ EPCC
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What is Kokkos, why Kokkos, and how does it work?

What

• Kokkos (κόκκος) is 
greek for “grains”, 
“seed” or “kernels” 

• Developed at Sandia 
National Laboratory

• Original purpose was 
to provide an 
abstraction layer for 
mathematical solvers

• Supports many 
backends including 
OpenMP® threading, 
CUDA, HIP, and others

Why

• Attractive P3 
development language 
for C++ application

• provides a single source 
capability for C++ codes 
to run on a variety of 
parallel CPU and GPU 
architectures

• Kokkos is well-
supported and relatively 
mature

• performs nearly as well 
or better than lower-
level languages

How

• Library based on C++ 
templates

• Libraries are quicker 
to implement and 
distribute

• Eventually these 
techniques can 
migrate to compilers

• Easily integrated with 
CMake as external or 
in-line build

June 25, 2024 AMD @ EPCC
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HIP backend support in Kokkos

Kokkos has long had a HIP backend for selected AMD Processors

Both CPUs and GPUs

The Kokkos team has aggressively developed their implementation for new AMD systems coming online

In the Fall of 2022, the HIP backend was promoted to production status

Kokkos handles many of the unique attributes of the AMD GPUs for you

June 25, 2024 AMD @ EPCC
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Kokkos abstractions for GPUs (and parallelism on CPUs)

• Two basic requirements for a GPU programming language
• Actually, for any fine-grained parallel language that runs on either GPUs or CPUs

• Execution capability – this handles how to generate the execution code within 

a program to run on the target architecture. Generally, this is for loops, but may 

also include single lines of computation.

• Memory handling – the control of the allocation and movement of memory 

between the CPU and GPU or other memory locations.

• Kokkos, as a portability layer for various fine-grained programming languages, 

must have an abstract representation of these two requirements. 

AMD @ EPCCJune 25, 2024
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Execution and memory abstraction in Kokkos

Execution Spaces -- compute hardware where computations are done

• Execution Patterns

• Simple loops -- parallel_for

• Reductions -- parallel_reduce

• Scans -- parallel_scan

• Execution Policies

• Range policies -- basically index sets that need to be operated on

• Team policies – grouping threads into teams as a subset of the execution space for hierarchical parallelism.

Memory Spaces – memory hardware where the data is stored

• Memory Layout

• LayoutRight vs LayoutLeft or automatic conversion between the two for different execution spaces

• Memory Traits

• atomic access, random access (shader memory), streaming stores

AMD @ EPCC
June 25, 2024
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AMD Tools Overview

1. Hipify tools: port your code from CUDA to HIP

2. Debug tools: make your code run on AMD hardware

3. Profile tools: get initial idea on how to optimize your code

4. Trace tools: get deeper idea of what happens in your code

5. Performance tools: optimize specific kernels to leverage hardware capabilities

June 25, 2024 AMD @ EPCC

HIPIFY-PERL

ROCGDB

HIPIFY-CLANG

ROCPROF

OMNITRACE

OMNIPERF

HIPIFLY
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We will use the tools on: MPI Ghost Exchange Example
❖ A rectangular domain is partitioned into a 2D computational grid, distributed among MPI processes

❖ An initial solution in specified on a cell-wise basis, then advanced with a 5-point stencil averaging operator

❖ Halo cells are located along the boundary, and around MPI domains (ghost cells) when doing parallel runs

❖ Boundary conditions are of outflow type, enforced prior to ghost halo exchanges

❖ Example of 2-step halo exchange with 3x3 grid of processes, each owning a 4x4 subset of the mesh:

June 25, 2024 AMD @ EPCC

Robey, Robert, and Yuliana Zamora. Parallel and high-performance computing. Manning, 2021.

Available at:

https://github.com

/amd/HPCTrainin

gExamples.git
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1. HIPIFY TOOLS
hipify-perl

❖ Easiest to use; point at a directory and it will hipify CUDA code

❖ It is located in ${HIP_PATH}/bin/

❖ It replaces cuda with hip, sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy becomes hipMemcpy)

❖ Recommended for quick scans of projects

❖ It will not translate if it does not recognize a CUDA call and it will report it

June 25, 2024 AMD @ EPCC

hipify-clang

❖ More robust translation of the code

❖ Generates warnings and assistance for additional analysis

❖ High quality translation, particularly for cases where the user is familiar with the make system

❖ Build from source (needs clang compiler)

❖ Hipification requires same headers that would be needed to compile it with clang

other tools

❖ Recursive directory tools (hipconvertinplace.sh, hipconvertinplace-perl.sh, hipexamine.sh, hipexamine-perl.sh)

❖ Header file interception layer (HIPIFLY)
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Gotchas
❖Hipify tools are not running your application, or checking correctness

❖Code relying on specific NVIDIA hardware aspects (e.g., warp size = 32) may need attention after conversion 
(grep for "32" just in case)

❖Certain functions may not have a correspondent HIP version

❖Hipifying can’t handle inline PTX assembly or CUDA intrinsics

❖Hipify-clang modifies the code in place, so better to make a copy of the code before running the tool

❖None of the tools convert your build system script such as CMAKE or whatever else you use. 
The user is responsible to find the appropriate flags and paths to build the new converted HIP code

June 25, 2024 AMD @ EPCC

❖ Hipify-perl and hipify-clang can both convert library calls (i.e. cuBLAS becomes hipBLAS)
❖ CMake v3.21 onwards can be used to automatically set up basic compilation flags by using 

enable_language(HIP), supports CMAKE_HIP_ARCHITECTURES for setting devices to build for

Notes

Portability Blog Post: https://rocm.blogs.amd.com/software-tools-optimization/hipify/README.html

https://rocm.blogs.amd.com/software-tools-optimization/hipify/README.html
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HIPIFLY: Intercept API method
 to choose GPU backend

• Enable running existing code on 
different backends with single 
header

• Can change between targeting 
CUDA and ROCm in one place

• Only works if no difference 
between API calls

• Existing code cannot use any 
CUDA specific hard coded values

• Performance needs to be 
evaluated on a case by case basis

June 25, 2024 AMD @ EPCC

Link to the header file:
https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector_add/src/cuda_to_hip.h

https://github.com/amd/HPCTrainingExamples/blob/main/hipifly/vector_add/src/cuda_to_hip.h
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1. Load ROCm module:  module load rocm

2. Do:

      hipify-perl GhostExchange.cu > GhostExchange.hip

the code is in: 
HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1Cuda

Example: hipify using hipify-perl

June 25, 2024 AMD @ EPCC
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2. DEBUG TOOLS

June 25, 2024 AMD @ EPCC

Rocgdb
AMD ROCm  source-level debugger for Linux®

❖ based on the GNU Debugger (GDB)

• tracks upstream GDB master

• standard GDB commands for both CPU and GPU debugging

❖ considered a prototype

• focus on source line debugging

• no symbolic variable debugging yet

As GDB fork it can be used with other tools that use GDB as backend
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The code in HPCTrainingExamples/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1WithBug

will produce an error: let’s go track it down!

❖module load rocm amdclang

❖mkdir build && cd build

❖cmake -DCMAKE_BUILD_TYPE=Debug ..

❖make VERBOSE=1

❖export HSA_XNACK=1

❖mpirun -np 4 ./GhostExchange -x 4 -y 1 -i 4 -j 4 -h 1 -t -c -I 30

The above command will produce a 4x4 grid (16 cells) partitioned among 4 MPI ranks, the partitioning is done 
with vertical strips, rank 0 gets the left most strip, rank 1 the next and so on.

Let’s use Rocgdb to debug our Ghost_Exchange hip code

June 25, 2024 AMD @ EPCC

Considering a small problem size for debugging
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Let’s look at some output

June 25, 2024 AMD @ EPCC

Values at cells
 owned by process 0

process 0 process 1 process 2 process 3

Owned values are not
initialized correctly

How it 
should be

How it 
is instead
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❖rocgdb -tui --args GhostExchange -x 1 -y 1 -i 4 -j 4 -h 1 -t -c -I 30 
(it is not an MPI problem so run in serial for simplicity)

❖(gdb) b 202 places a break point here if(rank==0) printf(“Initial State \n”);

❖place two more break points after the init kernels and the synchronization:
(gdb) b 188
(gdb) b 197
NOTE: if compiling in optimized mode (-O3) the compiler may not allow you to place breakpoints on empty lines.

❖ to see the breakpoints, do: (gdb) i b, show the breakpoints locations and their Num

❖you can delete a break point by doing: (gdb) d Num (Num for a breakpoint is shown by the above command)

❖ to run the debugger just do: (gdb) r

❖ to step to the next line: (gdb) n

❖ to continue after a break point: (gdb) c

Let’s use Rocgdb to identify where the problem is

June 25, 2024 AMD @ EPCC
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❖you can print to terminal the entries of the vector with: (gdb) p x[2][0] (the first entry is the y in the x array)
NOTE: this also works for array allocated on device.

❖printing at breakpoint 198 we see that the value of x[2][0] has not been changed from a 5 to a 400.2
therefore, the error is somewhere close to init_core2

❖ to further investigate, let’s get info on the thread grid we are using to run init_core2 with: 

1. (gdb) b 22: places a breakpoint inside init_core2 at

2. (gdb) i dispatches shows the thread grid information:

Let’s use Rocgdb to identify where the problem is

June 25, 2024 AMD @ EPCC

The blocks in the y-direction in the grid, only have 2 threads, 
meaning that tidy only has 0 and 1 as values, when the number 
of cells in the y-direction is actually 4, so the values with index 2 

and 3 are not initialize by init_core2 

Error in the block size definition:
dim3 block2(64, 2, 1);
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3. PROFILE TOOLS

June 25, 2024 AMD @ EPCC

Rocprof
ROC-profiler (rocprof) is the command line front-end for AMD's GPU profiling libraries

❖ provides tracing of GPU kernels, HIP API, HSA API, and Copy activity

❖ JSON traces can be viewed in Perfetto (type https://ui.perfetto.dev/  on Chrome browser)

❖ can be used to collect hardware counters (with additional overhead) 

❖ tool distributed with ROCm (like Rocgdb)

•  To get help: ${ROCM_PATH}/bin/rocprof -h
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Use Rocprof to get kernel information

rocprof can collect kernel(s) execution stats:

rocprof --stats --basenames on ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100

This will output two csv files:
• results.csv:  information per each call of the kernel
• results.stats.csv: statistics grouped by each kernel

Content of results.stats.csv to see the list of GPU kernels 
with their durations (in nano seconds)
and percentage of total GPU time:

In a spreadsheet viewer, it is easier to read:
from this information we see that the blur and
init_core kernels are the ones that take up the most
time, hence they are good candidates for
optimization

June 25, 2024 AMD @ EPCC
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Use Rocprof to get application traces

rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with Perfetto:

Modes can be combined, such as: --hip-trace --hsa-trace

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU kernels --hip-trace

host → device memory copies --hip-trace

CPU HSA Calls --hsa-trace

user code markers --roctx-trace

combine HIP/HSA APIs and GPU --sys-trace

June 25, 2024 AMD @ EPCC
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Use Rocprof to get application traces

June 25, 2024 AMD @ EPCC

rocprof --hip-trace  ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100

kernel calls

HIP API calls
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Use Rocprof to get application traces
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Clicking on the kernel, you can get detailed information about it:
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Other features provided by Rocprof 
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1. Collect user defined regions or markers using rocTX

Annotate code with roctx regions:
 #include <roctx.h>
roctxRangePush(“Region");
// some function
roctxRangePop();

Annotate code with roctx markers:
roctxMark("start of some code");
// some_code
roctxMark("end of some code");

2. Collect hardware counters: you can inspect what the counters are by doing

rocprof --list-basic
rocprof --list-derived

Then, specify counters in a counter file. For example:
rocprof -i rocprof_counters.txt ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100
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4. TRACE TOOLS
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Omnitrace

AMD Research holistic application analysis and tracing tool

❖ provides a holistic view of CPU, GPU, and system activity (MPI, PAPI, Kokkos, DynInst, Timemory, AMDuProf, etc.)

❖ can perform binary rewrite to be used by Omnitrace (does pre-instrumentation of the executable)

❖ proto files can be viewed in Perfetto (type https://ui.perfetto.dev/  on Chrome browser)

❖ can be used to collect hardware counters (through Rocprof or PAPI) 

❖ NOT part of the ROCm stack, so it needs to be installed separately

https://github.com/amd/HPCTrainingDock
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Use Omnitrace to visualize MPI calls

June 25, 2024 AMD @ EPCC

1.  First, create the Omnitrace configuration file:

       module load omnitrace

 omnitrace-avail -G ~/.omnitrace.cfg

 export OMNITRACE_CONFIG_FILE=~/.omnitrace.cfg

2. Then, create the instrumented binary:

 omnitrace-instrument -o ./GhostExchange.inst -- ./GhostExchange

3. Run the instrumented binary to see MPI activity on Perfetto:

mpirun -np 4 omnitrace-run -- ./GhostExchange.inst -x 4 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100
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Use Omnitrace to visualize MPI activity

June 25, 2024 AMD @ EPCC

With Omnitrace, you can keep track of MPI overhead on Perfetto, look for the perfetto-trace-<procID>.proto files:
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Useful Omnitrace config flag options

June 25, 2024 AMD @ EPCC

New presentation  on Omnitrace done on May 29 2024 for the Oak Ridge Leadership Computing Facility (OLCF)
(look for "Omnitrace By Example"): https://docs.olcf.ornl.gov/training/training_archive.html

https://docs.olcf.ornl.gov/training/training_archive.html
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5. PERFORMANCE TOOLS
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Omniperf
AMD performance analysis tool. Most notable features:

❖ roofline analysis to quantify performance of kernels based on hardware limits

❖ kernel comparison to quantify improvements an visualize their impact on hardware memory

❖ provides automated collection of hardware counters

❖ supports speed of light and memory chart

❖ NOT part of the ROCm stack, so it needs to be installed separately
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What is a roofline?
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Peak FLOPs/s
Unattainable performance
(greater than peak FLOPs/s)

Compute Bound

• Attainable FLOPs/s =

• 𝑚𝑖𝑛 ቊ
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠
𝐴𝐼 ∗ 𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Machine Balance:

• Where 𝐴𝐼 =
𝑃𝑒𝑎𝑘 𝐹𝐿𝑂𝑃𝑠/𝑠

𝑃𝑒𝑎𝑘 𝐺𝐵/𝑠

• Five Performance Regions:

• Unattainable Compute

• Unattainable Bandwidth

• Compute Bound

• Bandwidth Bound

• Poor Performance
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Visualize rooflines with Omniperf
module load omniperf

unset ROOFLINE_BIN

omniperf profile -n rooflines_PDF --roof-only --kernel-names -- ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100

June 25, 2024 AMD @ EPCC

blur

init_core2



98 |

[Public]

Compare performance of kernels with Omniperf

To generate profiling data do:

omniperf profile -n v1 --no-roof -- ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100 

Modify the init_core2 kernel grid:

dim3 block2(256, 4, 1); 

Then compile a generate the profiling data for this new version:

omniperf profile -n v2 --no-roof -- ./GhostExchange -x 1 -y 1 -i 20000 -j 20000 -h 2 -t -c -I 100

You can compare the two versions by using omniperf analyze:

omniperf analyze –p workloads/v1/MI200 –p workloads/v2/MI200 --dispatch 1 --block 7.1.0 7.1.1 7.1.2

7.1.0: Grid size   7.1.1: Workgroup size  7.1.2: Total Wavefronts

June 25, 2024 AMD @ EPCC

New presentation  on Omniperf done on April 25 2024 for HLRS in Germany:
fs.hlrs.de/projects/par/events/2024/GPU-AMD/day4/Introdution to omniperf.mp4

https://fs.hlrs.de/projects/par/events/2024/GPU-AMD/day4/Introdution%20to%20omniperf.mp4
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Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information 
contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard 
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any 
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no obligation to update or otherwise correct or revise this 
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person 
of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO 
RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON 
FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, 
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, and combinations thereof are trademarks of Advanced 
Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

The OpenMP® name and the OpenMP® logo are registered trademarks of the OpenMP Architecture Review Board.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

Intel® is a trademark of Intel Corporation or its subsidiaries. 

OpenCL  is a trademark of Apple Inc. used by permission by Khronos Group, Inc.

PCIe® is a registered trademark of PCI-SIG Corporation.

LLVM  is a trademark of LLVM Foundation.

Perl® is a trademark of Perl Foundation.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
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